球的切接问题

一、知识点总结

1球的表面积和体积公式

球体的体积公式:球的表面积公式

2球的切、接问题的一些结论

1)若正方体的棱长为学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!,则正方体的内切球半径是学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!;正方体的外接球半径是学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!;与正方体所有棱相切的球的半径是学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!

2)若长方体的长、宽、高分别为学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!,则长方体的外接球半径是学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!

3若正四面体的棱长为学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!,则正四面体的内切球半径是学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!正四面体的外接球半径是学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!;与正四面体所有棱相切的球的半径是学科网(www.zxxk.com)--教育资源门户,提供试题试卷、教案、课件、教学论文、素材等各类教学资源库下载,还有大量丰富的教学资讯!

4球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径

5球与圆台的底面与侧面均相切,则球的直径等于圆台的高

3常见模型

1

 

 

 

 

 

 

对应公式:

(2)

对应公式:

(3)

对应公式:

(4)

 

对应公式:

二、常用方法及典型例题

1一条棱垂直于底面

1《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马.若四棱锥eqIdac097205e9cb41279269aadcac3fb6f1为阳马,eqIdd3a908032e2b40df95a6d86089b3f682垂直于平面eqId436b01c2c7434f8ba6162a47e3ac6eb0,四棱锥eqIdac097205e9cb41279269aadcac3fb6f1的顶点都在球O的球面上,则球O的表面积为(    )

AeqIde835a5f3bdf34b269917bf97d468b3ccBeqIde36506e829e6480e9753236520e2af52CeqIdeb06f16a9e7b4b7e856f950c2fb3929dDeqId4b6d038496604cfda8b1e8de461279cc

分析:eqIdb95636bab7c94ba4958e6484e83d1c51为棱把eqIdac097205e9cb41279269aadcac3fb6f1补形成一个长方体,eqIdb53b60c33a254a27b9bfd58e818cc7e6是长方体的对角线,是长方体外接球的直径,也是eqIdac097205e9cb41279269aadcac3fb6f1外接球的直径,由此计算出eqIdf7377788cc624b3dbbd2df4e0abdfe59后可得面积.

解析:eqIdac097205e9cb41279269aadcac3fb6f1是阳马,以eqIdb95636bab7c94ba4958e6484e83d1c51为棱补形成一个长方体,如图,则eqIdb53b60c33a254a27b9bfd58e818cc7e6是长方体的对角线,

eqIdb53b60c33a254a27b9bfd58e818cc7e6是该长方体外接球的直径,也是eqIdac097205e9cb41279269aadcac3fb6f1外接球的直径,

由已知eqIdde44e3526c214999a78a411f1c0ae2d6

eqId2efda802d5534f6d92d9f8af7aaec28b的表面积为eqIdb0e40e42bc8148db9ccca4700c2bf7b7

故选:B

figurefigure

変式练习1.如图,在四棱锥eqIdac097205e9cb41279269aadcac3fb6f1中,底面eqId5ce7a06ae7a34393b92b5277978ac014为菱形,eqId43fe05c727b14343a0211870697669c9底面eqId5ce7a06ae7a34393b92b5277978ac014O为对角线eqIdcf2da96900c948a1b3ce7cbfd420c080eqId1b51efe7c2fa42748ac5a6be262e2fa4的交点,若eqId1659ffd0bab644598f55d71ea8cdaf75eqId2b379eb5bc50477cbf3dc8ff5d73ea59,则三棱锥eqIdd88d0d8250104606b53d44a4c44bfdde的外接球表面积为_________.

解析:取eqIdd3a908032e2b40df95a6d86089b3f682中点eqId2381423d4cd146cab95f55527681a766eqId890174c35d994035b942963f9fddd43b中点eqId93cbffaa5ae045d6ac45d1e979991c3a,连接eqId9ac39ddaa5c84d8ea36a60b286a3881d,则eqId8678e7259aec4a4199cced5881267e63

因为eqId43fe05c727b14343a0211870697669c9底面eqId5ce7a06ae7a34393b92b5277978ac014,所以eqId0e8ef417c9c34dbdba9c122b9b885c1b平面eqId5ce7a06ae7a34393b92b5277978ac014eqId5ce7a06ae7a34393b92b5277978ac014是菱形,则eqId649c770b82a048a59c02d5e443f5f938,所以eqId93cbffaa5ae045d6ac45d1e979991c3aeqId1fdd2dbb79104064a6de3e84c8deec58的外心,

figureeqId43fe05c727b14343a0211870697669c9底面eqId5ce7a06ae7a34393b92b5277978ac014eqId9f176841ada543deaee68cbb95326e7c平面eqId5ce7a06ae7a34393b92b5277978ac014,所以eqId3b62ac6e3e314ac19ae265659659a8d3,所以eqId2381423d4cd146cab95f55527681a766eqIde179dbf4b9514c4e89a4404995fc18a7四点距离相等,即为三棱锥eqIdd88d0d8250104606b53d44a4c44bfdde的外接球球心.

eqId1659ffd0bab644598f55d71ea8cdaf75eqId261084ea715d45c3a831ae404d679f7a,所以eqId6f4171fa276747c486294d046989cf8a,所以eqIde215c9d7976048bd8bc4cae98d3c4617

所以三棱锥eqIdd88d0d8250104606b53d44a4c44bfdde的外接球表面积为eqIde025705710dc4644b2453fd9cb8f0444

故答案为:eqIde835a5f3bdf34b269917bf97d468b3cc

2、对棱相等的三棱锥外接球

2一个四面体ABCD的所有棱长都为高考资源网(ks5u.com),中国最大的高考网站,您身边的高考专家。,四个顶点在同一球面上,则此球的表面积为(    )

A高考资源网(ks5u.com),中国最大的高考网站,您身边的高考专家。       (B高考资源网(ks5u.com),中国最大的高考网站,您身边的高考专家。      (C高考资源网(ks5u.com),中国最大的高考网站,您身边的高考专家。          (D高考资源网(ks5u.com),中国最大的高考网站,您身边的高考专家。

解:A

変式练习2四面体ABCD中,已知AB=CD=AC=BD=AD=BC=,则四面体ABCD的外接球的表面积为(     )

A25πB45πC50πD100π

解:C

解析:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,

所以可在其每个面补上一个以为三边的三角形作为底面,且以分别xyz长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为xyz的长方体,并且x2+y2=29x2+z2=34y2+z2=37

则有(2R2=x2+y2+z2=50R为球的半径),得R2=

所以球的表面积为S=4πR2=50π

3、正棱锥外接球

3若一个四棱锥底面为正方形, 顶点在底面的射影为正方形的中心, 且该四棱锥的体积为学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!,当其外接球的体积最小时, 它的高为(  

A学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!                 B学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!                C学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!               D学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!

学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!

変式练习3正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )

A.eqId846808cf3cc74a1f84626eeb877fd40bB.eqIde835a5f3bdf34b269917bf97d468b3ccC.eqId9050468529364d52bb5f07ad6c942cc0D.eqIdd2d78458d7a24aa291d3e40174050489

figure解析:正四棱锥P-ABCD的外接球的球心在它的高eqId119a3231d64447b08fe7de2021397df5上,

记为O,PO=AO=R,eqId896fdcd65b5b4639946eebf3e3616c76eqIda77eb652f3794a7b9ff3c2cadefb1b1a=4-R,

在Rt△eqId97af01c3c162472296aa2cb81beb48a4中,eqId26c27e5a7cf8432588138e63a402dbd3

由勾股定理eqIdbbd92156b3eb437b9d195ed61483d63ceqIdc92bd33d00364cbd8885a94f22c7cdd0

∴球的表面积eqId8eea980d4b324824be31ca22f7750da4,故选A.

4墙角型外接球

4已知eqIdd3a908032e2b40df95a6d86089b3f682eqId0fd9ac73d66042c6bbd74f8ccdcbd9fceqIdb53b60c33a254a27b9bfd58e818cc7e6两两垂直且eqIdf1a0310d8d2a464581b245ac68e3623eeqIdeb7a4a9b7cf14123be018ad27788e172eqIdcdc7dd0a440d4a769f4cb7e37c2ef518,则过eqIdbedf755e0fdb4d078d6859360706b163eqId052844cae8574a8ab842c38a039baac0eqId8754ce8cf7f34f04abb9a0c041f57f5ceqId19a4eb16029e4550a14f2afe4741a3c3四点的球的体积为________

figure解析:将三棱锥eqIdd704f7a0e58e4493898137dcf162bd18补成长方体eqIdcff39f000d994bfcb8856aa157e0d3ac,计算出长方体的体对角线长,可得出外接球的半径,利用球体体积公式可得结果.

由于eqIdd3a908032e2b40df95a6d86089b3f682eqId0fd9ac73d66042c6bbd74f8ccdcbd9fceqIdb53b60c33a254a27b9bfd58e818cc7e6两两垂直,将三棱锥eqIdd704f7a0e58e4493898137dcf162bd18补成长方体eqIdcff39f000d994bfcb8856aa157e0d3ac

则长方体eqIdcff39f000d994bfcb8856aa157e0d3ac的体对角线长为eqId0c5d995218664579a5882881b672691b

故三棱锥eqIdd704f7a0e58e4493898137dcf162bd18的外接球的半径为eqId1e510fa8b82249ba958a5d05afdc6ebf

因此,该球的体积为eqId5fc4062476834f89a33b09f5254658b4.

故答案为:eqIde2ace98d5a5f4a02aed33313837a6a4c.

変式练习4已知长方体的两个底面是边长为eqId37705e1ef6a84bbdbe88433e75932cdf的正方形,长方体的一条体对角线与底面成eqIdb7fe117dc1a94fbf93716ecbbcced6bd角,则此长方体的外接球表面积为(    )

A.eqId7681784440c04c469bb134c3ea9fb53aB.eqId9d1a6fc5b77c428fa86d41d660efa327C.eqIdfceb10da8b63490dae4fdc016cf362d8D.eqIde36506e829e6480e9753236520e2af52

解析:记该长方体为eqId588284d93dc5489295f8f224f8e30d13eqId7b55f4e26a554edd8ea14a18e34d7769为该长方体的一条体对角线,其与底面所成角为eqIdb7fe117dc1a94fbf93716ecbbcced6bd

因为在长方体eqId588284d93dc5489295f8f224f8e30d13中,侧棱eqIda03044a56547485da83dbfc97b915a00底面eqId5ce7a06ae7a34393b92b5277978ac014

figureeqId1fd6eaa46f57427cb9d74134791e7417eqId7b55f4e26a554edd8ea14a18e34d7769与底面所成角,即eqId9b6a2802039040969fafe51fe3898251

因为长方体的两个底面是边长为eqId37705e1ef6a84bbdbe88433e75932cdf的正方形,所以eqId5f65df842a0e49bd8774e420a5f190c4

eqIdfd7b2f0fbb3a4790a81701adbeaa9ee6,所以eqId44a7080f9ab34fa3bffb3d92008c0944

又长方体的外接球直径等于其体对角线的长,

即该长方体外接球的直径为eqId4d9ba7dc70604440a5f0cc2186dc58dd

所以此长方体的外接球表面积为eqId4ed4792efc024225945dee38f5b2f5d6.故选:A.

三、基础训练

1已知A,B是球O的球面上两点,AOB=90,C为该球面上的动点,若三棱锥O-ABC体积的最大值为36,则球O的表面积为(     )

A36π    B.64π    C.144π    D.256π

解析:如图所示,当点C位于垂直于面学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!的直径端点时,三棱锥学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!的体积最大,设球学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!的半径为学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!,此时学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!,故学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!,则球学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!的表面积为学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!,故选C

学科网(www.zxxk.com)--教育资源门户,提供试卷、教案、课件、论文、素材及各类教学资源下载,还有大量而丰富的教学相关资讯!

2.已知正四棱锥的体积为eqIdd7225001a06642ef81093263e6a2f9ac,侧棱与底面所成的角为eqIdb7fe117dc1a94fbf93716ecbbcced6bd,则该正四棱锥外接球的表面积为___________.

解析:如下图所示,设正四棱锥eqIdac097205e9cb41279269aadcac3fb6f1的底面eqId5ce7a06ae7a34393b92b5277978ac014的中心为eqId93cbffaa5ae045d6ac45d1e979991c3a,连接eqId9608739a1d8547df8df8461d80f9f5f2eqIdcf2da96900c948a1b3ce7cbfd420c080eqId1b51efe7c2fa42748ac5a6be262e2fa4

figure

设正四棱锥eqIdac097205e9cb41279269aadcac3fb6f1的底面边长为eqId70a27b6ddf6b478285353abb3b1f3741,则eqId6453bd7e4b804b378561beb450456a75

由于eqId93cbffaa5ae045d6ac45d1e979991c3a为正四棱锥eqIdac097205e9cb41279269aadcac3fb6f1的底面eqId5ce7a06ae7a34393b92b5277978ac014的中心,则eqId4270d35034ff4cd18325127a40e15584平面eqId5ce7a06ae7a34393b92b5277978ac014

由于正四棱锥eqIdac097205e9cb41279269aadcac3fb6f1的侧棱与底面所成的角为eqIdb7fe117dc1a94fbf93716ecbbcced6bd,则eqId18271f400757497ab5a3731af9cc9627

所以,eqId274dba5d7ce142c69425e30778de9fac是以eqId1421ecc6d141429498bdc50a43f9a48c为直角的等腰直角三角形,

同理可知,eqId72e555a8471c47738d440d2129e6a796是以eqIde731d9179f374d45b14e2d23cc77e7ea为直角的等腰直角三角形,

eqId08e85b06eecf4dcca9ac790ce09c0451eqIdcf2da96900c948a1b3ce7cbfd420c080的中点,eqIdef9b9f23f5f94c6e93e054588ab8d936eqId98868d34927c4ae7a07b7e0583ac2e67

eqIdf35efce926a546a18fb8009b55fad57a,解得eqId7864ced096cc45748c415fafdd9b5025

eqId4f3f67a4877343f680af4716060600d8,由直角三角形的性质可得eqIdeb084835e1484778bf9cbc04bd4fe21f

eqId05a869ea53d94911b62882e66211c9b8,所以,eqId93cbffaa5ae045d6ac45d1e979991c3a为正四棱锥eqIdac097205e9cb41279269aadcac3fb6f1外接球的球心,

eqId93cbffaa5ae045d6ac45d1e979991c3a的半径为eqId2dbfd94ab5ca4da38b89662816c95451,该球的表面积为eqId9428d1b7e00b4289a2c49d3e8bfbee2f.

故答案为:eqId5dcc3f21683f4fb6884a864497a95032.

3在封闭的直三棱柱eqId44010ff8178c44a3b59dbfa8c48e2abb内有一个体积为V的球,若eqId9924045ecd3b48f996cedb6d02fc6d7beqIdfe18ffe719a14cd2a8848c7f519d9ecfeqId59f39895b9d74483851c8e81469ef70f

eqId8b9939c474e64920a8674fc1242c2c9c,则该球体积V的最大值是

A.eqId7e55d8cb62d94843a647b77b70e9fc66B.eqId18ebe0a8e04d4bb2a76e85582a5ce7ecC.eqIddea8b7334168498c8dd27ac6362f2fc6D.eqId0c490655b80848d293972a10090239e9

解析:figure的内切圆半径为figure,则figure,故球的最大半径为figure,故选B.

考点:球及其性质.

2.(2020·四川泸州市·高三一模)已知三棱锥eqId97af93bc48424679a970c09ac8f447cd中,eqId4d0801b4a3504c129f8553c255c320a8eqIdc02083b925834c7a82f3f2ad08c94bc2是边长为2的等边三角形,且平面eqId34a0c394100b4c9ba6ae50c0e773a64a平面eqId0f24c9c77eb648e4aade772aaae0eca7,该三棱锥外接球的表面积为(    )

A.eqId7681784440c04c469bb134c3ea9fb53aB.eqId4fe908a8a9da430b96e382a9dc347187C.eqIdf02c7a6cd286450983fa0c3df26806cdD.eqId21de4e4b09c246e49d71159cfc7fccf0

解析:取eqId1b51efe7c2fa42748ac5a6be262e2fa4的中点eqId93cbffaa5ae045d6ac45d1e979991c3a,连接eqId354f9ab2c3b24d57a21211e3af6b4572,则eqId6c05ac3ff8f34f09aafac669d944ac9c

因为平面eqId34a0c394100b4c9ba6ae50c0e773a64a平面eqId0f24c9c77eb648e4aade772aaae0eca7,所以可证得eqId1269de6296704f16a18fe2aea63563ab平面eqId0f24c9c77eb648e4aade772aaae0eca7eqId23854a2bf1824013ac76521ecea384f5平面eqId89fbdcb029be4482b52165366491c70f

eqIdf1ce351f76eb4d45b6c30ce080bb02c8的外心eqId63db14a5b4334f3ea583c8fb12b0d175,作eqId429e5fda697c491aa7495fa609eba13b,则eqId235e694579ed4baabb51ad6629f58618四点共面,

eqId64b9b599fdb6481e9f8d9a94c102300b的外心eqIdf758a4be08144754a64c9ea60aa2e673,过点eqIdf758a4be08144754a64c9ea60aa2e673eqId1a0830891ff846de8422ea80714ecab4的平行线交eqId62d6f1d3dfed4912a94abe3d4a624c30于点eqId2efda802d5534f6d92d9f8af7aaec28b

因为eqId1a0830891ff846de8422ea80714ecab4垂直平面eqId89fbdcb029be4482b52165366491c70f,则eqIddf7db25136304eabbd996c0517c7f506平面eqId89fbdcb029be4482b52165366491c70f

所以点eqId2efda802d5534f6d92d9f8af7aaec28beqId48bbb48da1fc4894a6c401302847b892四点的距离相等,所以点eqId2efda802d5534f6d92d9f8af7aaec28b为三棱锥eqId97af93bc48424679a970c09ac8f447cd外接球的球心,

连接eqId020901a7ec0e47a08004db33cf5d82ba,可求得eqId0ecabaa0b65c4a4fa32818cf3d1577ee,所以eqId2c2c9247fd3a42469cbb204ac8df241a,所以外接球的表面积为eqId484313e5e9924930ba47204b88167574.

故选:D.

figure

 

四、能力提升

一、单选题

1.在三棱锥eqIdd453c1853a4943c7ad0535c6249b3215中,eqId2b844dc4430843c4a34ba1b5908accea若该三棱锥的体积为eqId4445a8ebb82f4d41ae38faf7031bdfd9,则三棱锥eqIdd453c1853a4943c7ad0535c6249b3215外球的体积为(    )

AeqIdf1470514d3384b7d8224a7712ab506bdBeqId236bfe74f1024849b3818a5cd741f299CeqId622af570e6544e28a50ac877518287b9DeqId054411e869d34199a45ac00b267a0409

2.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称为阳马.若四棱锥eqIdac097205e9cb41279269aadcac3fb6f1为阳马,eqIdd3a908032e2b40df95a6d86089b3f682垂直于平面eqId436b01c2c7434f8ba6162a47e3ac6eb0,四棱锥eqIdac097205e9cb41279269aadcac3fb6f1的顶点都在球O的球面上,则球O的表面积为(    )

AeqIde835a5f3bdf34b269917bf97d468b3ccBeqIde36506e829e6480e9753236520e2af52CeqIdeb06f16a9e7b4b7e856f950c2fb3929dDeqId4b6d038496604cfda8b1e8de461279cc

3.四个半径为2的球刚好装进一个正四面体容器内,此时正四面体各面与球相切,则这个正四面体外接球的表面积为(    )

AeqIde50ec25eb54a42f1bcb12125433ef077BeqIdd45b0d159f4f424ba791b65c28efb222

CeqId19df237c948c4c378e376a7010ce23e2DeqIdea11c3669cb246f6b162d0372b30ea87

4.已知在正四面体ABCD中,EAD的中点,P是棱AC上的一动点,BPPE的最小值为eqId0185fdf027aa4107aa070dd486715924,则该四面体内切球的体积为(    )

AeqIdf0a29f641fbc453498c22dea7e2cf65aπBeqId96c7406fe9bb42d482404e87ed3f58bdπ

C4eqIda2a0ce3781fa4c26b624f5966b7dee44πDeqId4d3bcdf2aaff44059129d0d4bbd5b41dπ

5.在三棱锥eqId3a31af2cac704f7882626fb78089ea14中,eqIdeecb96c84ba340069d573f6c1caefbbbeqId1a59f675e3ea4309bfb83ff3b4953b43eqId003787d5ef4d4c5299cba44ef46b493b,二面角eqId80ff48e2da274964bb23fe202ab4d237的余弦值是eqId0538e70434fa4b4890d2172bbf2e1041,若eqId7c4a605e138049f9bdfb2a7dc01e3ac4都在同一球面上,则该球的表面积是(    )

AeqId9d1a6fc5b77c428fa86d41d660efa327BeqIdf02c7a6cd286450983fa0c3df26806cdCeqIdfceb10da8b63490dae4fdc016cf362d8DeqIdea6db2d2e793438e92f064f625fe4194

 

第II卷(非选择题)

请点击修改第II卷的文字说明

 

二、填空题

6.已知三棱锥eqId97af93bc48424679a970c09ac8f447cdeqId7758afa01251432a962db25cff5ae306分别是棱eqId9be745f8fb8e4d0ba9ed0033d6afecfc的中点,eqIdf609150a430842eab5ee252e31270c99eqIde68ca2beab6c46f096f75e253b114bda,则此三棱锥外接球的表面积_________.

7.如图,有一个半径为eqId861879ca5a674de0a14499e529607777的半球,过球心eqId2efda802d5534f6d92d9f8af7aaec28b作底面的垂线eqId417e80f1349244878d01fe90e0891f5feqId417e80f1349244878d01fe90e0891f5f上一点eqIdd50cb90343894f8fae640dcadf643885满足eqId38aac8a8a21948deaa1f19224d1fef33,过eqIdd50cb90343894f8fae640dcadf643885作平行于底面的截面将半球分成两个几何体,其中较大部分的体积为_____________.

figure

8.已知直三棱柱eqId9881c5faa5cb449bb37fa59b41c76e43中,eqId42781e6e35b2421db6e91286beabff0f,点eqId312ef2c826304089b9b0f1d1e88b0f50在棱eqId8be2f2c2d57e4d3c91f2f00078ddb920上且满足eqIdf16f526c06c94bb0b9023e93efc684f6则三棱锥eqIde9963d95844b4923aba5c099885219f4的外接球的表面积为________________________

9.已知三棱锥eqId97af93bc48424679a970c09ac8f447cd的各顶点都在球O上,点MN分别是eqIdcf2da96900c948a1b3ce7cbfd420c080eqId34c6b6e427744abfb88dc90b8c7c2111的中点,eqIdcb0d4673e05543d087e5f334c63d4b56上平面eqId0f24c9c77eb648e4aade772aaae0eca7eqId8a8ca210640f4459825e75418767309ceqId1525adb52cf54dd18284edcc6d486069,则下列结论正确的是___________.

eqIde4acd98e4399416f9f8e3c4f8ff2e30a平面eqIda670baf5d73f4d7689915a00c51820f2

O的体积是eqIdd1a0bfd4a9e5424ab6a41590e502a205

二面角eqId1a8eae54a65b476b90befd98e482f24f的余弦值是eqId5222c2ea3b544c58bafb590c9238c493

平面eqId5c1e5f7657ef4d89a3e61caa9aad928c被球O所截的截面面积是eqId42764fb0b55f4cdead887fbd69314154

10.在三棱锥eqId3a31af2cac704f7882626fb78089ea14中,eqId7b33b33cb3f649f48e6f7337cf33c4d8,二面角eqId386db65cd36c4cf881427b8f5c5f932feqId62e24b0e15744029a67505f18ae7806d,则三棱锥eqId3a31af2cac704f7882626fb78089ea14的外接球的表面积为______________.

试卷第1页,共3


参考答案

1D

【分析】

SC的中点为OAB的中点为D,连接OAOBOD,根据eqId8772616e75374fb8a1528cd65d1643e1,得到 eqId67f2a46618534c249c9e1c3901f08abd,则O为其外接球的球心,易证eqIdb16ea48f184f4003a09e4cf784ae3c52平面AOB,由eqIddfa69f1d5a924cbe8889aa267b409ea0,求得半径即可.

【详解】

如图所示:

figure

SC的中点为OAB的中点为D,连接OAOBOD

因为eqId8772616e75374fb8a1528cd65d1643e1

所以eqId0d3dc97fd64844dc9c1c5823929face4,

eqId67f2a46618534c249c9e1c3901f08abd

所以O为其外接球的球心,设球的半径为R

因为eqId4f59a2247660492b82d06d6494a62828eqId14009a3050044c4493f6f7ec92298f77

所以eqIde6a49d754a1943cfbee31b896c1bd94b

所以eqId343c8cf0ba564baaa10ff298e3739210

因为eqId3fc3571af93343a1b1c1612acbb349db

所以eqIdb16ea48f184f4003a09e4cf784ae3c52平面AOB

所以eqId27941d590c6140428576026771034406

解得eqIdf65a47987f784f0d982a5b24a3f20bb6

所以其外接球的体积为eqId5bd736435bc54787be962f81170fd2ae

故选:D

2B

【分析】

eqIdb95636bab7c94ba4958e6484e83d1c51为棱把eqIdac097205e9cb41279269aadcac3fb6f1补形成一个长方体,eqIdb53b60c33a254a27b9bfd58e818cc7e6是长方体的对角线,是长方体外接球的直径,也是eqIdac097205e9cb41279269aadcac3fb6f1外接球的直径,由此计算出eqIdf7377788cc624b3dbbd2df4e0abdfe59后可得面积.

【详解】

eqIdac097205e9cb41279269aadcac3fb6f1是阳马,以eqIdb95636bab7c94ba4958e6484e83d1c51为棱补形成一个长方体,如图,则eqIdb53b60c33a254a27b9bfd58e818cc7e6是长方体的对角线,

eqIdb53b60c33a254a27b9bfd58e818cc7e6是该长方体外接球的直径,也是eqIdac097205e9cb41279269aadcac3fb6f1外接球的直径,

由已知eqIdde44e3526c214999a78a411f1c0ae2d6

eqId2efda802d5534f6d92d9f8af7aaec28b的表面积为eqIdb0e40e42bc8148db9ccca4700c2bf7b7

故选:B

figure

3A

【分析】

画出直观图,梳理条件,再画出截面图,从中找到等量关系,求出外接球半径,从而求出外接球的表面积.

【详解】

如图1所示,正四面体ABCD中,AH底面BCDEFGK为四个球的球心,MCD中点,连接BMAM,易知BHM三点共线,直线AH交平面EFG于点eqId99bb908da063489bb7ce3e5ef6e55922,连接eqId10f426ecec9e421ca97737dc42a25836,交GF于点N,则NGF的中点,因为内切球半径为2,故EF=4,画出截面ABM如图2所示,正四棱锥EFGK外接球球心设为O,则正四面体ABCD的外接球球心与正四面体EFGK外接球球心重合,设正四面体ABCD的外接球半径为R,正四面体EFGK外接球半径为r,在图2中,EK=4eqIda2acc61ad19f4b438a8e73d7e3a0e444eqIdf845512de44d4741ae833290c11c296feqIdc85ab7b8a2fb43129950e1dc13d18e10,所以eqId3b820ca23f4f4100b355d2af89639880

eqIde5ae4014c4cb43cda004f1896e1d9b48,即eqIdaeb2dd373cc34bea81089fb71cdfa590,解得:eqId1ef010d2478a4d78866df42d51c0ecac

所以eqId5a2e36c3afbc4fc9986628f29c815321

过点EEPBM于点P,则EP=2

BEP∽△eqId41e8a2144fb54c2c921bdd457d0dfb5e

eqId75c235aeebfc4528b57c2aa441af7676eqId91b6e70880e342abbf9b0fbb51b30b98

解得:eqId895a9a47d65b41a08e5957f10110792b

eqId2d2d353c7ce344bb8711b9b47db15774

正四面体ABCD的外接球表面积eqId162084634fe84b898be6b54ef68cdb56

figurefigure

故选:A

【点睛】

与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.

4D

【分析】

首先设正四面体的棱长为eqId70a27b6ddf6b478285353abb3b1f3741,将侧面eqId64b9b599fdb6481e9f8d9a94c102300beqId6aae9bfe020741bbb0eede8056d37208沿eqIdcf2da96900c948a1b3ce7cbfd420c080边展开成平面图形,根据题意得到eqId9a72df43202b401194d0683ac05d4983的最小值为eqIdf9ce8db728fa44b1a5bef9765a333efa,从而得到eqId4f38ef21045c44d79c27535f34b9214c,根据等体积转化得到内切球半径eqId0d9ebb3184e84625a6094baee8a7bdee,再计算其体积即可.

【详解】

设正四面体的棱长为eqId70a27b6ddf6b478285353abb3b1f3741,将侧面eqId64b9b599fdb6481e9f8d9a94c102300beqId6aae9bfe020741bbb0eede8056d37208沿eqIdcf2da96900c948a1b3ce7cbfd420c080边展开成平面图形,如图所示:

figure

eqId9a72df43202b401194d0683ac05d4983的最小值为eqId5e6ce89061e142e290d59ab60f318d88

解得eqId4f38ef21045c44d79c27535f34b9214c.

如图所示:eqIdf9bf4c9969a64254a421546b400bf01a为正四面体的高,

figure

eqId4855eb9098534db2afeae631bad2216c,正四面体高eqId43a98d105f204a9e9941be305af52f1b.

所以正四面体的体积eqId083eead4fda049faba860e6cd03f7437.

设正四面体内切球的球心为eqId2efda802d5534f6d92d9f8af7aaec28b,半径为eqIdd9026ce1966847eb86a5e13345fed583,如图所示:

figure

eqId2efda802d5534f6d92d9f8af7aaec28b到正四面体四个面的距离相等,都等于eqIdd9026ce1966847eb86a5e13345fed583

所以正四面体的体积eqId2cb81beff7e04f98b83db5b0f601bf37,解得eqId0d9ebb3184e84625a6094baee8a7bdee.

所以内切球的体积eqId971932400bce4036baf39dd3ac2bbcdf.

故选:D

5C

【分析】

eqIdcf2da96900c948a1b3ce7cbfd420c080的中点eqId0cd8063abf2b458f80091bc51b75a904,连接eqId6d5662216bbb4b409b56037ea2d60b83,易得eqIded10be7ba24246bd8f1ec2d6f07a394a,利用余弦定理、勾股定理算得eqIdf68bf54af87446aaaec6777474e933d3,可知eqId21e126cd83a64d5ca3a488c2054261a4,所以eqId3ca490c8cc5a4fe7854b073624cc0b1f为直角三角形,同理可得eqIdead78591f6944789b224097f5e9043b2为直角三角形,取eqId7dd42628f24e43619424a4af9a2b7725中点eqId93cbffaa5ae045d6ac45d1e979991c3a,可知eqId93cbffaa5ae045d6ac45d1e979991c3a为外接球球心,计算eqId5e1e2c6daa9243a9a6005ff0153f2a8d的长度即可.

【详解】

eqIdcf2da96900c948a1b3ce7cbfd420c080的中点eqId0cd8063abf2b458f80091bc51b75a904,连接eqId6d5662216bbb4b409b56037ea2d60b83.因为eqId0662211e77fc450d9b9e774a064da1bf,所以eqId8463f7db12324f77867f5391bb82f352

可得eqId9663c6dea8714f36a5252ee0a1a61c50即为二面角eqId2f2b59921bbd40bdae1603e7844a41bf的平面角,故eqIded10be7ba24246bd8f1ec2d6f07a394a.

在直角eqId17e3bddb5ae945c0a001db5d4a6820e3中,eqId5d755d23ffcb40939af91b9eb3bec4c6,同理可得eqIdf92ea07780c24ce290dc02f2b689f2bb,由余弦定理得,

eqId0af2e6bdf7a04f50acc0c86a1e85410f

解得eqId1a48b93f92f54ec9bd88eb2168415d7a.

eqId3ca490c8cc5a4fe7854b073624cc0b1f中,eqId05c4259ce23a43bd8a36e9b34205cd94

所以eqId3ca490c8cc5a4fe7854b073624cc0b1f为直角三角形,同理可得eqIdead78591f6944789b224097f5e9043b2为直角三角形,取eqId7dd42628f24e43619424a4af9a2b7725中点eqId93cbffaa5ae045d6ac45d1e979991c3a

eqIdb9b21812856647f497a542270bdfb061,在eqId442c2fe589274e588e0e2851ddeb057ceqId8dae579b5a504407ae38349ab4714ced中,eqId07c55b7c1e9a4ea0bc6b547226402dc1eqIdb12594e636e54765b1e9b7f0c6cc1c35

所以点eqId93cbffaa5ae045d6ac45d1e979991c3a为该球的球心,半径为eqIda2a0ce3781fa4c26b624f5966b7dee44,所以球的表面积为eqIddf1297a6911844e08dfec8a4589b691c.

figure

故选:C

【点睛】

本题主要考查三棱锥外接球的体积的计算,考查学生空间想象能力与数学运算能力,是一道中档题.

6eqIdb6125ab81cab4b2b878c549758e3a5b0

【分析】

由已知得出eqId0f11c2065e3f45ff8c936750f661157ceqId99a3187c2b8f4bcc9703c74c3b72f1f3eqId34c6b6e427744abfb88dc90b8c7c2111的中垂线,在eqId0f11c2065e3f45ff8c936750f661157c取点eqId2efda802d5534f6d92d9f8af7aaec28b,使得eqId7197d4b611a7494da7fed330dbdca0c0时列出方程求出eqId2efda802d5534f6d92d9f8af7aaec28b的位置,即可求出外接球半径,进而求出外接球表面积.

【详解】

解:在eqId0f11c2065e3f45ff8c936750f661157c上取一点eqId2efda802d5534f6d92d9f8af7aaec28b,连接eqId393c4cbcbb6242bd8a42f571acff9628eqIde8db88a11e9842ada6220fd2d3624cc9,如下图所示

figure

eqId42319c06adfa44efa016308debb64a81分别是棱eqId9be745f8fb8e4d0ba9ed0033d6afecfc的中点,且eqIde68ca2beab6c46f096f75e253b114bda

eqId2ff68aa58ddc4b71a4d186ee34cedc8aeqId99a3187c2b8f4bcc9703c74c3b72f1f3eqId34c6b6e427744abfb88dc90b8c7c2111的中垂线

eqId4325f78b2e46476a81d11b9a7dcda00deqIdc8e9aa2d380145a2962a7940b8ec2bc7

eqId653e10f4582c4bd3aab175328f4d2d63外接球球心到各顶点的距离相等

eqId6f7ed67c0a024364806a23a71f56aeb5只需要eqId7197d4b611a7494da7fed330dbdca0c0即可满足eqIde0f69747a7054db99ef498b4b7dd10ca,此时eqId2efda802d5534f6d92d9f8af7aaec28b为外接球球心

eqIdc643f09236a14b0bb7b20414846f819e,则eqId6a4d6665fa844e53ad7b4f06c49c1fb5eqId852d273c6e0346e6849984c8eee7d00a

eqId7197d4b611a7494da7fed330dbdca0c0,即eqId6b7778dfe500419e878af81a2d178fab

解得:eqIdc8c5b1538b4d4d2a9e0ba1ab96db958c

eqId3870df0e35f649e38a9054df5d4922b1即外接球半径eqId1ac1e68f244c4ccf8bda3985293e14c2

eqId6f7ed67c0a024364806a23a71f56aeb5三棱锥外接球的表面积为eqIde2693b2a450e43239630cec51f97dd29

故答案为:eqIdb6125ab81cab4b2b878c549758e3a5b0.

7eqId0b7c6ebd93c24c30b2b41df2ff5c5a61

【分析】

利用祖暅原理计算出截面以上部分的体积,再利用半球的体积减去截面以上部分的体积可得结果.

【详解】

设截面以上部分的体积为eqIdc0af0200202c47b8bb854b3c2e9a0253,截面以下部分的体积为eqId75502b14fe3340938a83fb60e049ce31

figure

eqId9f30b5dbb88c467b917e05b0ab5bb61aeqIdd747f557c3304bde81cc1ee943950293,则eqIdbb52b906599b47629eb822582e360067eqIdcbf450b090de4695a4f8900c2432ee4d

eqId8345f6ebe3c549fe8b8c4e8d14d724a5进行eqId5f904d1376ac4de7a7d6cfea92ff6981等分,过这些等分点作平行于底面的平面,将截面以上部分切割成eqId5f904d1376ac4de7a7d6cfea92ff6981层,

figure

每一层都是近似于圆柱形状的小圆柱

这些小圆片的体积之和即为eqIdc0af0200202c47b8bb854b3c2e9a0253

由于小圆片近似于圆柱形状,所以它的体积也近似于相应圆柱的体积,

它的高就是小圆片的厚度eqId29b309bd18b54768bac40b1e8c447c9c,底面就是小圆片的下底面,

由勾股定理可知第eqIdb6e15e51d29a47a7aff44f98b1aafaee层(由下向上数)小圆片的下底面半径为eqId72d90ff84f384505a6ff0a06a8e6cac0

于是,第eqIdb6e15e51d29a47a7aff44f98b1aafaee小圆片的体积为eqIdc8f48837dc664c2aae4862325af0cfbe

所以,eqId92d7aeaee2834c689067b4b9793c1959

eqId8194d6c4606b49e795331efda1eb56a1

eqIdc7841a2e90b544de8fbb7b437b036a37

所以,eqId0a277172efa14e1d8048567cdbd3f95d

eqId177622852360478e8ffe09451867a2c0.

故答案为:eqId0b7c6ebd93c24c30b2b41df2ff5c5a61.

8eqIddecc10f551744d6a92a4adbfe2d0bfa7

【分析】

eqId64b9b599fdb6481e9f8d9a94c102300beqIdc01c23c8e4194303b1a4329991ae6181的外接圆圆心分别为eqIdfd12fe34870a4dd7aef28f7623d40040,过eqIdd50cb90343894f8fae640dcadf643885作与平面eqIda670baf5d73f4d7689915a00c51820f2垂直的直线,过eqIdb12a09e77857490c848c79bcf0414e8f作与平面eqId0f8025fc1e734ea782faa9fa4920c5cb垂直的直线,两直线交点为外接球球心,由此求得球半径得表面积.

【详解】

eqId64b9b599fdb6481e9f8d9a94c102300beqIdc01c23c8e4194303b1a4329991ae6181的外接圆圆心分别为eqIdfd12fe34870a4dd7aef28f7623d40040,外接圆半径分别为eqId2bcfe4c7e5a043d3845d2fc0665d1b16

三棱锥eqIde9963d95844b4923aba5c099885219f4的外接球的球心为eqIdbe753f2b7a624157942fb5dcda6e1e47

因为平面eqId34a0c394100b4c9ba6ae50c0e773a64a平面eqId8a8c6c15d2e147ad812ec34b7228f6d9所以三棱锥eqIde9963d95844b4923aba5c099885219f4的外接球球心在过点eqIdfd12fe34870a4dd7aef28f7623d40040且与平面eqIda670baf5d73f4d7689915a00c51820f2和平面eqId0f8025fc1e734ea782faa9fa4920c5cb垂直的两条直线的交点上.

因为eqId768fc27736d241e98c4315b4876212a7,即eqIdb1803dcd0646465285ffbf361c487652是等边三角形,故eqId099e5f21c4e145a99544cb3cde1d74bd

设点eqId93cbffaa5ae045d6ac45d1e979991c3aeqId0627be51821d4be7b3e024a354815d64的中点,连接eqId978d16fa3f924eb09c749600f184c269eqId7111d4972b7c401c903ff4927c13b5ec上,

利用平面几何知识易求得eqId826aa62ae14548a69a3259c011601e78

由余弦定理得eqId6fae1dd6d4c4408fa015c4f4518ae9c8,所以eqIdf51be44252144fcba422562faa640e99

由正弦定理得eqId476c8d8ce5474025be7196b03730e35a

eqIde8a57c0ce636466688a899bbfc03e09b,在eqIdc96431cef1ee47ccaf35fc373f1b1668中,eqId934b51f61be442b99c271db0c5c4671e

即三棱锥eqIde9963d95844b4923aba5c099885219f4的外接球的半径eqId126ad1c3100e4548a95698d42c01818d,从而外接球的表面积为eqIdac7fd62efdae4568a323063e56984d36

故答案为:eqIddecc10f551744d6a92a4adbfe2d0bfa7

figure

9①②

【分析】

,利用判定定理判断;对,找到球心,得到半径,最后计算;对,过点eqId8754ce8cf7f34f04abb9a0c041f57f5ceqId368bf05fbe2c40ceab7d12cbb013d4ed,找到二面角eqId1a8eae54a65b476b90befd98e482f24f的平面角,然后计算即可;对,利用等体积法计算.

【详解】

如图:

figure

对于选项,因为eqIda76815a78f744289bf4e7c0b9f94e861平面eqId0f24c9c77eb648e4aade772aaae0eca7,所以eqId0633321416264d44bfcddd7589911d04

eqId8a8ca210640f4459825e75418767309ceqId1525adb52cf54dd18284edcc6d486069,可得eqIdf010b987a50a4de29e138b43b06342c9

满足eqId8a86856f489b477ca470f13a5081007c,所以eqId18154253f83d437e9323882af5080f91,又eqId7d44a76cffa3491894df9aceed5b6f0e

所以eqIde4acd98e4399416f9f8e3c4f8ff2e30a平面eqIda670baf5d73f4d7689915a00c51820f2,故正确;

对于选项eqId8a76bbe21fb549e3a9c2038d58c7a3d8eqId8edccfe411c746b6b9c522186b80b0baeqId669e25501ee24b338e3910a60a8b674a的公共斜边,

所以eqId8a76bbe21fb549e3a9c2038d58c7a3d8的中点即三棱锥eqId97af93bc48424679a970c09ac8f447cd外接球的球心eqId2efda802d5534f6d92d9f8af7aaec28b

所以球eqId2efda802d5534f6d92d9f8af7aaec28b的半径为eqId107a05f4f8fd426a99b772151965cf7b,球eqId2efda802d5534f6d92d9f8af7aaec28b的体积为eqId338b8bb92292423fb173c1bbc658fc88,故正确;

对于选项,过点eqId8754ce8cf7f34f04abb9a0c041f57f5ceqId368bf05fbe2c40ceab7d12cbb013d4ed,垂足为eqId75a143b898e14ccdb032561fba9da811,连接eqId1a4ce58f93ca4c61a0866e2bf8e8e044,易证eqIde7ec0e8603e344cda6e7fbcff807d403平面eqId52c1ac29bf454ed0a275b259d12a3241

所以eqId7cdc334059fc4ae68f3b2af5850c2772,又eqId368bf05fbe2c40ceab7d12cbb013d4ed,所以eqIde4e1f377193f48f4949900dfe699d861平面eqId9ad44ec4ca8541de98d065a2805fc33f,所以eqId1f507294c36b4840b5efc13da9dbf213

所以eqId37b197e911fd45dc824c23023b61e6f6为二面角eqId1a8eae54a65b476b90befd98e482f24f的平面角,在eqId16396ab536cf462399ed2cefb9763997中,可得eqIdb67f28d9770e4a7f92cd888184f52f6d

eqId64b9b599fdb6481e9f8d9a94c102300b中,可得eqId9f6d10298a4141cca7a4ec4513e3b788,在eqIdd4fd68ec409847f2a79c755368d93b59中,eqId4c5fd0e2938946b3b43b1d2ba96888d5

eqIdc2f3ad4e53a54d48a850d27f4de7be9deqId341aa24ebf614732bacb135ea7b60455,故错误;

对于选项,设eqId2efda802d5534f6d92d9f8af7aaec28b到平面eqId5c1e5f7657ef4d89a3e61caa9aad928c的距离为eqId2b1922fa59af4c5098f7af850d2fcd98

平面eqId5c1e5f7657ef4d89a3e61caa9aad928c被球eqId2efda802d5534f6d92d9f8af7aaec28b所截的截面圆的半径为eqIdd9026ce1966847eb86a5e13345fed583,因为eqId876037be016c4316885be871978f005beqId6aae9bfe020741bbb0eede8056d37208的中位线,

所以eqId2efda802d5534f6d92d9f8af7aaec28b到平面eqId5c1e5f7657ef4d89a3e61caa9aad928c的距离等于eqId19a4eb16029e4550a14f2afe4741a3c3到平面eqId5c1e5f7657ef4d89a3e61caa9aad928c的距离,

eqId4b539e5232254fd1ad58ec5d1b093419,即eqIdfd34786357ca40e3b0dbe0400dc3d3e0,得eqId550e932c75dc4210a7aefc71ab0dacb5

所以eqId2d59d1b49c174b13aaf2f79609187142,所以截面圆的面积为eqId08e6ad2e3f0b48ee9cbfc1af924fc3c1,故错误.

故答案为:①②

10eqId08cb79652c794caf925112940d075550##

【分析】

取线段eqId0627be51821d4be7b3e024a354815d64的中点eqId312ef2c826304089b9b0f1d1e88b0f50,连结eqId8a76bbe21fb549e3a9c2038d58c7a3d8eqId6cf017611ebe4927af87855665e01c80,由题意得eqId9950bc3373e64c058f478d5ca6526d77eqId702033129c7b4d6f8b950769ec336c41eqId1fdc3045b6244ed8a698ac74d4b715cd是二面角eqIde132fd14d56544a9b0596df9c0956ce6的平面角,eqId2441bc37c1b347ea86f301ad4e6e350c,由以上垂直关系得eqIdcacd306285ea4b82b60d9e1eec76062b平面eqIde6d1f707290b47e4934b76512c08b550,分别取eqId8a76bbe21fb549e3a9c2038d58c7a3d8eqId6cf017611ebe4927af87855665e01c80的三等分点eqId93cbffaa5ae045d6ac45d1e979991c3aeqId63db14a5b4334f3ea583c8fb12b0d175,在平面eqIde6d1f707290b47e4934b76512c08b550内,过点eqId93cbffaa5ae045d6ac45d1e979991c3aeqId63db14a5b4334f3ea583c8fb12b0d175分别作直线垂直于eqId8a76bbe21fb549e3a9c2038d58c7a3d8eqId6cf017611ebe4927af87855665e01c80,两条直线的交点即球心eqId2efda802d5534f6d92d9f8af7aaec28b,连结eqId393c4cbcbb6242bd8a42f571acff9628,则球eqId2efda802d5534f6d92d9f8af7aaec28b半径eqId3d66c274caa7469ea1a6fe06f99507c3,由此能求出球eqId2efda802d5534f6d92d9f8af7aaec28b的表面积.

【详解】

figure

取线段eqId0627be51821d4be7b3e024a354815d64的中点eqId312ef2c826304089b9b0f1d1e88b0f50,连结eqId8a76bbe21fb549e3a9c2038d58c7a3d8eqId6cf017611ebe4927af87855665e01c80,由题意得eqId9950bc3373e64c058f478d5ca6526d77eqId702033129c7b4d6f8b950769ec336c41

eqId6291ed8a396f44328458f8463a260234是二面角eqIde132fd14d56544a9b0596df9c0956ce6的平面角,eqIda44360dd762a483bae0bcf69f5ec5b35

由以上垂直关系可得eqIdcacd306285ea4b82b60d9e1eec76062b平面eqIde6d1f707290b47e4934b76512c08b550,分别取eqId8a76bbe21fb549e3a9c2038d58c7a3d8eqId6cf017611ebe4927af87855665e01c80的三等分点eqId93cbffaa5ae045d6ac45d1e979991c3aeqId63db14a5b4334f3ea583c8fb12b0d175

在平面eqIde6d1f707290b47e4934b76512c08b550内,过点eqId93cbffaa5ae045d6ac45d1e979991c3aeqId63db14a5b4334f3ea583c8fb12b0d175分别作直线垂直于eqId8a76bbe21fb549e3a9c2038d58c7a3d8eqId6cf017611ebe4927af87855665e01c80,两条直线的交点即球心eqId2efda802d5534f6d92d9f8af7aaec28b

连结eqId393c4cbcbb6242bd8a42f571acff9628,则球eqId2efda802d5534f6d92d9f8af7aaec28b半径eqId3d66c274caa7469ea1a6fe06f99507c3

由题意知eqIdf3f694e24c46401a9ed71873211a45fbeqIdbe1938fa020248698a5ed4e809883552eqId4b3df2e817584c30aa78e223ff10e5b5eqIdecf01bbef8a54322af4fbdafc76e4341

连结eqId0bf1249561ae4d4ea5e2799752e37863,在eqId19a211c89a7845e6b7022bab962c25b8中,eqId8d453cc2c291428cb834d95d9e1a6878eqIdd20285ae31d94e90a368d5f6b2ff1d0f

eqId4f8793387e044f4894086dab4b1fdf23

eqId6f7ed67c0a024364806a23a71f56aeb5eqId2efda802d5534f6d92d9f8af7aaec28b的表面积为eqIdb2a5ebe423af4e3495f99c8f6f6a7738

故答案为:eqId08cb79652c794caf925112940d075550

试卷第1页,共3


promotion-pages

试卷第1页,共3